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Summary: (Z)-anti-4-Hydroxy-1-alkenylcarbamates 1 yield, with essentially complete dia= _ .- 
stereoselectlvity, the epoxides 2 with (lZ)-2,3-anti-3,4-anti-configuration on treatment -- 
with tert.-butylhydroperoxidelvanadylbis(acetoacetonate). 

Diastereomerically pure 4-hydroxy-1-alkenyl N,N-diisopropylcarbamates 1) 

.2) 
-- 1 having the re= 

lative configuration (Z)-anti -- are easily prepared from metallated 2-alkenylcarbamates and 

carbonyl compounds via a titanium-mediated homoaldol reaction 3) . They represent protected 

r-hydroxy-alkanals (for R' = H) or -alkanones {for R' = alkyl); on Hg 
2+ 

-catalyzed methanoly= 

zis from the enol carbamates 1 and by subsequent oxidation, trans-disubstituted r-lactones 3b 

are formed. 

t-BuOOH / V5+ 

1 2 = 3 = = 

OCb = O-$-N(iPr)z 
0 

R’,R2 : see fable 

Here the bonus of consistent double bond configuration is not utilized. The hydroxyl- 

directed epoxidation to form the oxiranes 2 is expected to proceed with high diastereo- 

facial selection, as was found for appropriate homoallylic alcohols4)(1, alkyl replaces OCb). 

Although 2-oxy-oxiranes have rarely proved of value in organic synthesis , we reasoned that 5) 

in 2 the regio- and stereoselectivity of nucleophilic ring opening might be more facile and 

more easily controllable because of the hydroxy group. 

On treatment of the enol carbamate la with m-chloroperbenzoic acid (CH2C12 O'C), two dia= 

stereomeric2) 
- 

epoxides 2a and 3a were obtained in a ratio 85 : 15, yield 86%. Employing the 

Sharpless method 4b) using ter~butylhydroperoxide/vanadylbis(acetoacetonate), only a single 

product 2a was detected ('H and l3 C NMR). The carbamates lb-f gave similar results (Table 1). 
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The epoxide ') 2a (m-p. 96'C) was subjected to X-ray crystal structure analysis 7) 

(Figure 1) which proved its (1!*,25*,32*,4>*)-configuration. 

The reaction of the cyclopentane derivative 4 gave a rearranged product, which was elu= 

cidated as a bicyclic lactole 8) 7 by crystal structure analysis 9) , (Figure 2). Obviously, 

in the slightly acidic reaction mixture the intermediate Spiro-epoxide 5 is opened by the 

migrating N,N-diisopropylcarbamoyloxy group with inversion of configuration lo) to form the -- 

aldehyde 6 which is in equilibrium with its hemi-acetal 7. 

H 

4 = 

C6H5 

5 = 
6 7 
= = 

Oxiranes of type 2, which lack a tertiary C-3 atom, are stable under the reaction con= 

ditions and also survive rapid silica gel chromatography. However, they are very reactive 

in the presence of Lewis acids. Thus 2a on treatment with acetone and borontrifluoride 

etherate at -78'C furnished the bicyclic acetal 8 in 77% yield 11) . Although strong nucleo= 

philes cause ring opening with inversion at C-3 12) , tertiary amines are tolerated; pro= 

tection of the free hydroxy group in 2 therefore causes no problems. For instance, from 2a 
we obtained the acetate 9 (98%), the trimethylsilyl ether 10 (92%) 

(71%) by the usual methods. 

and the MEM-ether 11 

a = 

ii-iv) ) 

OCb 

& p R= 
&I R= 

11 R= = 

OCb 

C(=O )CH, ( ii 1 

SiMe, (iii 1 

CH,OCH,CH,OCH, ( iv) 

i) 1.0 equiv. BF3-OEt2/acetone -78'C. ii) Ac20, Et3N, 5 mol % 4-(dimethylamino)pyri= 

dine, 15 h at -15'C. iii) Me3SiC1. Et3N, CH2C12, -70 - 20°C. iv) MEM-Cl, (iPr)2NMe, 

15 h at 40°C. 
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General procedure: 5.00 mm01 of enolcarbamate 1 and 25 mg (2 mol-%) VO(acac)2 in dry 

dichloromethane (40 ml) are stirred at 20°C with 7.50 mmol of a water-free solution of tert- 

butylhydroperoxide in 1,2-dichloroethane 13) (6 to 24 h, tic-analysis). Then dimethyl sul= 

fide (0.25 ml, 3.5 mmol) is added and stirring is continued for a further 30 min. For work- 

up, the mixture is extracted by sat. NaHC03-solution (2 x 40 ml), sat. KCl-solution (25 ml) 

and dried over MgS04. Evaporation of the solvent under reduced pressure, followed by silica 

gel chromatography (hexanes/diethyl ether 3:l) affords analytically pure 2 (see Table 1). 

Table 1: (1,2-Epoxy-4-hydroxy-alkyl)carbamates 2 

educt 1 R' R2 epoxide 2(a'b) time(h) yield (%)(') 

la H (CH3)2CH 2a 6 92 

lb H (CH3)3C 2b 6 86 

IC H CH3 2c 6 92 

Id H ‘sH5 2d 6 90 

le CH3 (CH3)2CH 2e 24 81 

If CH3 ‘sH5 2f 24 81 

(a) Epoxides 3 were not detected, diastereomeric ratio 
2 : 3 > 97 : 3. (b) 
obtained. (c) 

Satisfactory combustion analyses were 
Yield after chromatographic purification. 

Fig. 1. One of the two independent mole= Fig. 2. The molecule of 7 in 

cules of 2a in the crystal'). the crystal'). 
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2a, 100 MHz'H NMR (CDC13): a = 0.95 (d, J = 7.0 Hz; 3-CH3), 1.02 und 1.05 (je d, = 7.0 J 

Hz; CH(Ci3)2), 1.25 (d, J = 7.0 Hz; NCH(Cd3)2), 1.75 - 2.10 (m; 3-H, 5-H), 2.18 (d, J = 

5.0 Hz; OH), 3.02 (dd, 3 

1 6.5 Hz, J - - 9.0 Hz; 4-H), 

= 2.8 Hz, 5 = 8.5 Hz; 2-H), 3.40 (ddd, = 5.0 - 

3 J Hz, J - 

25 MHz 154'5 C NMR (CDC13): 6 = 

3.75 - 4.20'(m; NC!), 5.60 (d, = 2.8Hz; 1-H). --4y3 Jl 2 

13.64 (3-CH3), 17.06 und 19.76 (C-i, 5-CH3), 20.12 - 21.63 

(NCH&H3), 30.95 (C-5), 35.07 (C-3), 45.66 - 46.99 (NCH), 57.80 (C-2), 74.62 (C-l), 

80.40 (C-4), 154.29 (N-C=O). 

Crystal data for (2) : ET, 2 = 10.133(3), b = 13.487(4), c = 14.051(4) 8, a = 76.59(3), 

R = 88.33(3), y = 70.56(3)', 1 = 4 (two independent molecules), 8 = 0.066 for 3167 

unique observed reflections (MO &a, 2&i,,, 50'). 

7, m.p. 104'C (ether/hexane); in CDC13 4:l mixture of 7/2-a-7. 'H NMR(CDC13), 7:a = 

1.20 (d) and 4.0 (m) 

4.80 (d, J = 8.5 Hz, 

4-H); 5.71 (s, 2-H). 

123.721 (C-7); 27.45 

(C-5); 83.84 184.241 

(C=O). 

NCH(CH3)2); 1.85 (m; 6-, 7- and 8-H2); 2.78 (m, 5-H); 3.43 (s, OH); 

4-H); 5.81 (s, 2-H); 

- 13C NMR (CDC13), 7 

7.4 (m, C6H5). 2-epi-7: 4.52 (d, = 8.5 Hz, J 

/2-m-7/ : a = 20.95 /20.95/ (CH3); 26.77 

/28.26/ (C-6); 34.85 /35.44/ (C-8); 45.45 (NCH); 60.04 /56.16/ 

(C-4); 100.58 /95.93/ (C-l); 102.02 /99.70/ (C-2); 155.33 /155.15/ 

Crystal data for 7 : 

Z = 4, R = 0.058 for - - 

!2,/c, a = 6.948(l), b = 24.053(5), 5 = 11.964 (2) 8, 8 = 97.16(2)', 

2136 unique observed reflections (MO l$, 2Qmax 50'). Further de= 

tails of both crystal structure determinations can be obtained from the Fachinforma= 

tionszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, Fed. Rep. of 

Germany; please quote the full literature citation and reference number CSD-51622. 

For the similar rearrangements of 2-acetoxy-oxiranes see ref. 5b). 

8, oil; 'H NMR (CDC13): 0.90 (d, J = 7.0 Hz, 8-CH3); 1.8 (m), 1.01 and 1.05 (each d, J = 

7.0 Hz, 7-CH(Cli3)2); 1.30 and 1.49 (each s, 3-CH3); 1.8 (m, 8-H and 7-CH); 3.59 (dd, 

?7,7' = 10.0 Hz, d7 8 = 4.0 Hz, 7-H); 4.47 (dd, Jl 5 = 4.0 Hz, Jl , 8 = 4.0 Hz, 1-H); 5.70 

(d, 5-H). 

J. LiiRmann, D. Hoppe, P. G. Jones, C. Fittschen, G. M. Sheldrick, following communica= 
tion. 

In some experiments, the commercially available solution of 80% tert.-BuOOH in (tert.- 
Bu)~O~ was also used without further purification and gave identmresults. 
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